
Lightweight Hypervisor Verification:
Putting the Hardware Burger on a Diet

Charly Castes
EPFL

Switzerland

François Costa
ETH Zürich
Switzerland

Nate Foster
Cornell and Jane Street

USA

Thomas Bourgeat
EPFL

Switzerland

Edouard Bugnion
EPFL

Switzerland

ABSTRACT
Hypervisors are an essential part of our computing infras-
tructure, yet ensuring their correctness remains a significant
challenge for the community.While several hypervisors have
been formally verified using traditional methods, they have
typically required a huge effort and significant input from
verification experts. With the increasing diversity of hyper-
visors, driven by open hardware and custom ISAs, there is
a growing need for more accessible approaches that can be
used by non-experts.
This paper advocates for the use of lightweight formal

methods for verifying hypervisors. We conduct a top-down
analysis of hypervisors and simple correctness criteria on
the lock-step execution of the virtual and host machines.
By relating the two executions, these criteria transform the
task of verifying higher-level properties, such as memory
isolation, into simpler conditions that can often be discharged
automatically.
We demonstrate the applicability of our approach by de-

veloping a verification framework for a RISC-V hypervisor,
leveraging the Kani Rust model checker and a Sail specifica-
tion of the RISC-V architecture. Using our tool, we identified
and corrected 21 bugs and proved several properties, includ-
ing memory isolation, with minimal human effort.

CCS CONCEPTS
• Security and privacy→ Trusted computing; Virtual-
ization and security; Logic and verification.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HOTOS 25, May 14–16, 2025, Banff, AB, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1475-7/25/05
https://doi.org/10.1145/3713082.3730373

ACM Reference Format:
Charly Castes, François Costa, Nate Foster, Thomas Bourgeat, and
Edouard Bugnion. 2025. LightweightHypervisor Verification: Putting
the Hardware Burger on a Diet. In Workshop in Hot Topics in Oper-
ating Systems (HOTOS 25), May 14–16, 2025, Banff, AB, Canada.ACM,
NewYork, NY, USA, 7 pages. https://doi.org/10.1145/3713082.3730373

1 INTRODUCTION
Virtualization has become ubiquitous over the past few decades.
Today hypervisors run on every server in the cloud, and are
frequently installed on laptops [32], mobile phones [1], and
even IoT and safety-critical devices [20]. But with great suc-
cess comes great responsibility.With virtualization becoming
a de facto standard, hypervisors are playing an increasingly
important role in ensuring the security and reliability of our
computing infrastructure.

Prior work has shown that it is possible to verify high-level
properties for hypervisors using traditional formal meth-
ods [5, 18, 19, 21, 27, 31]. But while these results are impres-
sive, they have typically required a huge effort and signifi-
cant input from verification experts. To scale verification
up to the growing number of production-grade hypervi-
sors [2, 3, 9, 11, 13, 20, 32] there is a need for more accessible
approaches than can be used by non-experts.
This paper advocates for the use of lightweight formal

methods [4, 10, 17, 22, 33] for verifying hypervisors. We do
not aim at full verification of general properties, but rather a
pragmatic, highly automated, and non-disruptive approach
that can verify critical properties and help find bugs.
Our approach takes advantage of two important trends:

First, essentially all major architectures in use today are
effectively virtualizable [24], either because they were de-
signed with virtualization in mind, or because they have
been extended to support virtualization [6, 29]. Second, a
growing number of architectures come with high-quality,
machine-readable specifications of their semantics [8, 26].
Hence, to lower the verification burden for developers,

we can leverage these facts and the unique structure of

1

https://orcid.org/0009-0008-7021-158X
https://orcid.org/0009-0007-3785-0366
https://orcid.org/0000-0002-6557-684X
https://orcid.org/0000-0002-8468-8409
https://orcid.org/0000-0001-7237-6929
https://doi.org/10.1145/3713082.3730373
https://doi.org/10.1145/3713082.3730373

HOTOS 25, May 14–16, 2025, Banff, AB, Canada C. Castes, F. Costa, N. Foster, T. Bourgeat, and E. Bugnion

Host HW Interface
Hypervisor
Virtual HW InterfaceHW

Spec

VM
Config

Platform
Config

Figure 1: Illustration of the hardware burger. The hy-
pervisor sits in between two well defined hardware
interfaces.

hypervisors—which we call the hardware burger, as illus-
trated in Figure 1—to lift specifications for architectures
into specifications for hypervisors. More precisely, build-
ing on Popek and Goldberg’s classic formalization of hy-
pervisors [24], we identify two criteria, faithful emulation
and faithful execution, that are expressive enough to capture
high-level guarantees, such as memory isolation, and yet
simple enough to be verified using lightweight methods.
With these criteria fixed, we then develop an automated

verification framework for Miralis [12], a RISC-V Rust hy-
pervisor, and report on our experiences. Our framework uses
off-the-shelf verification tools and architecture specifications
and is exposed to developers as traditional unit tests. It is
fully automated and requires no special expertise in formal
methods to use. We report on 21 bugs that we found using
our framework, none of which had not been detected previ-
ously. We also discuss our experiences proving three higher-
level properties: correct emulation of privileged instructions,
proper delivery of interrupts, and memory isolation.

2 CONTEXT AND BACKGROUND
This section gives background on the two key technologies
that underpin our approach: virtualizable architectures and
machine-readable architecture specifications.

2.1 Trap & Emulate Hypervisors
In their seminal 1974 paper on formal requirements for vir-
tualization [24], Popek and Goldberg proved that, on vir-
tualizable architectures, a trap & emulate hypervisor can
provide resources control, establish equivalence, and ensure
efficiency. Today nearly all architectures are virtualizable,
and all major production hypervisors rely on trap & em-
ulate for virtualization. Rather than focus on a particular
implementation, we take a top-down approach and simply
assume a trap & emulate hypervisor as described by Popek
and Goldberg. Under this model the VM can execute each
of its instructions in one of two modes: emulation for priv-
ileged instructions and direct execution for the others. We
study each mode in Section 4 when we identify criteria for
faithful emulation and execution.

Host HW Interface
Hypervisor
Virtual HW Interface
Virtual Machine

Ref HW Interface
Ref Machine

 Simulation

Figure 2: The reference (left) and host (right) machines.

2.2 Lifting Architecture Specifications
Formal specifications are the crux of any verification ef-
fort; they constitute the foundation that supports any formal
claims. The smallest mismatch between a specification and
the real system can void the proofs altogether, or at least
severely limit their applicability. As a consequence, writing
correct specifications remains a challenge even for light-
weight formal methods.

In general, there is no way to escape the need to write
specifications—at a minimum, one must at least specify the
exposed interfaces of the system being verified [15, 16, 22].
But hypervisors are different. Indeed, the interfaces to a
hypervisor are well defined, as it executes on hardware
and exposes virtual hardware—this is the hardware burger
from Figure 1. Fortunately, in recent years we have seen the
emergence of high-quality, well-maintained, and machine-
readable specification for most architectures [26]. For in-
stance, the ARM architecture is formalized in ASL [25] while
RISC-V has an official model in Sail [8]. This is not only an
opportunity to free hypervisor developers from the burden
of writing formal specifications, but also a guarantee that the
specifications will stay up to date as the hardware evolves.
In the rest of this paper, we therefore assume the availability
of a machine-readable architecture specification.

3 A SIMULATION PROBLEM
Many of the most important properties that a hypervisor
might satisfy, such as correct emulation and memory isola-
tion, are the consequences of a simpler simulation problem—
i.e., proving that the virtualized program, i.e., the virtual
machine (VM), is a simulation of a separate reference ma-
chine. Figure 2 illustrates the host, virtual, and reference
machines. The main complication is that while the host and
reference machine usually share the same architecture, they
often have different configurations, e.g., memory, number of
cores, interrupt IDs, or hardware extensions. To illustrate,
consider memory isolation: assuming the reference machine
is configured with a subset of the host memory, then proving
that the VM is a simulation of the reference machine implies
that it cannot access the rest of the host memory. In particu-
lar, because any such access would trap (for invalid address)
on the reference machine, it will also trap on the VM.

2

Lightweight Hypervisor Verification HOTOS 25, May 14–16, 2025, Banff, AB, Canada

≃

≃

Sv

Sv'

Sr

Sr'

Reference MachineHost Machine

VMHypervisor

Figure 3: Lock-step execution between a VM and the
corresponding referencemachine. For each instruction,
the VM can either execute the step directly or trap to
the host hypervisor for emulation.

To prove the simulation relation, we first need a notion of
observability, after which it suffices to prove that observable
states evolve in lock-step. The Popek and Goldberg formal-
ization offers a natural notion in the form of privileged state
that is useful for defining observability. The privileged state
is all architectural state that can only be accessed through
privileged instructions1, and by opposition we refer to all
other state as unprivileged. Because unprivileged instructions
are executed directly by the VM, without interference from
the hypervisor, the unprivileged state is what can effectively
be observed by the VM. Parts of the privileged state can
selectively be made observable during privileged instruc-
tion emulation by the hypervisor, for instance by loading
the content of a virtual privileged register into a general-
purpose register. With this definition of observability, we
define lock-step execution as follow:

Definition (Lock-step execution). The virtual and ref-
erence machines execute in lock-step if (i) their initial observ-
able states are equal, and (ii) after each executing an instruc-
tion, their observable states remain equal.

To prove lock-step execution we need to proceed disjunc-
tively by cases, as illustrated in figure 3. If the instruction is
privileged it traps to the hypervisor for software emulation.
Note that the whole emulation process counts only for a
single instruction executed in the VM. Otherwise, it executes
directly on the hardware.

4 CORRECTNESS CRITERIA
The difficult problem of verifying high-level properties such
as memory isolation is now reduced to the simpler problem
of proving lock-step execution. In this section, we formalize
two criteria, faithful emulation and faithful execution, that
1In this context we refer to instructions that trap out of the VM environment
to the hypervisor. With virtualization extensions kernel-level instructions
are not necessarily privileged.

S'

S i

S''≃?

hwhyp

hw
spec

VM
config

hypervisor
emulator

Figure 4: The faithful emulation criteria. A hypervisor
implementation properly emulates the virtual hard-
ware interface if for any state and instruction the re-
sulting state is equivalent to what a reference machine
would produce.

guarantee lock-step execution during privileged instructions
emulation and direct execution of unprivileged instructions.
Table 1 summarizes the notations used in this section.

4.1 Modelling the Architecture
An instruction set defines the transition function of the sys-
tem’s state machine. The transitions depend on the config-
uration 𝑐 ∈ 𝐶 of the platform (accessible memory ranges,
available hardware extensions, number of cores, interrupts
IDs, etc.) and the current state 𝑠 ∈ 𝑆 of the machine (regis-
ters and memory). For the purpose of verification, we also
make the next instruction 𝑖 ∈ 𝐼 explicit—i.e., we encode
the instruction fetch in the model. Note that interrupts can
be modelled as special instructions. We can formalize the
transition function as follows:

ℎ𝑤 : 𝐶 × 𝑆 × 𝐼 → 𝑆.

Here, the ℎ𝑤 function encodes the whole architecture—
e.g., for the official RISC-V Sail model, it runs to 16k lines
of code. If we fix a configuration 𝑐 , it can also be used as a
simulator. Indeed, C andOCaml simulators can be generated
from the official RISC-V Sailmodel. In short, the ℎ𝑤 function
is a high-quality specification of the architecture that already
exists. In the following we leverage ℎ𝑤 to specify the host,
virtual, and reference hardware interfaces (see Figure 2),
instead of using custom specifications.

4.2 Faithful Emulation
Privileged instructions (and interrupts) executed by the VM
trap to the hypervisor for software emulation. The virtual
hardware interface constitutes the biggest attack surface that
is directly exposed to the software running in the VM. Bugs
in the emulation logic can at best disrupt the VM workload,
and at worst lead to privilege escalation. We designate the

3

HOTOS 25, May 14–16, 2025, Banff, AB, Canada C. Castes, F. Costa, N. Foster, T. Bourgeat, and E. Bugnion

Table 1: Symbols definitions
Symbol Definition Symbol Definition

𝐶 Set of platform configurations 𝑆𝑢 Set of unprivileged machine states
𝑐𝑟 Configuration of the reference machine 𝑠 Machine state
𝑐ℎ Configuration of the host machine 𝑝𝑣 Privileged VM state
𝐼 Set of instructions 𝑢 Unprivileged machine state
𝐼𝑝 Set of privileged instructions ℎ𝑦𝑝 Hypervisor privileged instruction emulator
𝑖 Instruction ℎ𝑤 Executable hardware specification
𝑆 Set of machine states ℎ𝑤 |𝑢 Restriction of the hardware specification to 𝑆𝑢
𝑆𝑝 Set of privileged machine states 𝑐𝑓𝑔 Hypervisor hardware configuration function

u' ≃?

hwhw

pvcfg

ph

host
config

VM
config

u''

hypervisor

u i

Figure 5: The faithful execution criteria. A hypervi-
sor must configure the host machine such that direct
execution produces observable results similar to a ref-
erence machine.

emulation function of a hypervisor as ℎ𝑦𝑝 , where 𝐼𝑝 ⊂ 𝐼 is
the set of privileged instructions:

ℎ𝑦𝑝 : 𝑆 × 𝐼𝑝 → 𝑆

The ℎ𝑦𝑝 function corresponds to one iteration of the trap,
emulate, resume loop that is commonly found in hypervi-
sors. Note that the function can include arbitrary side effects,
including scheduling other VMs. Using these definitions, we
can define faithful emulation, which states that the hypervi-
sor implements a correct virtual hardware interface:

Definition (Faithful emulation).
∃𝑐𝑟 ∈ 𝐶, ∀(𝑠, 𝑖) ∈ 𝑆 × 𝐼𝑝 , ℎ𝑦𝑝 (𝑠, 𝑖) ≃ ℎ𝑤 (𝑐𝑟 , 𝑠, 𝑖)

In plain English, a hypervisor should be an accurate em-
ulator of a reference machine, at least for the privileged
instructions. Figure 4 illustrates the criteria. The comparison
(≃) might need to take into account differences in internal
representation between the hypervisor and the specification.

4.3 Faithful Execution
To enforce lock-step execution during direct execution the
hypervisor must configure the host hardware to behave like

the reference machine. The difficulty comes from the dif-
ference in configuration between the host and reference
machine, as well as the need for the hypervisor to maintain
its own privileged state. To illustrate this with loads and
stores, i.e., prove memory isolation, we present a concrete
example involving the RISC-V PMP in Section 6.3.
To make reasoning easier it is helpful to partition the

machine’s state between privileged and unprivileged state,
i.e., 𝑆 = 𝑆𝑝 × 𝑆𝑢 . Further, as per the virtualization require-
ments, the privileged state cannot be modified by unprivi-
leged instructions, thus we consider a restriction of ℎ𝑤 to
the unprivileged state:

ℎ𝑤 |𝑢 : 𝐶 × 𝑆𝑝 × 𝑆𝑢 × 𝐼 → 𝑆𝑢 .

Faithful execution is linked to a notion of configuration
of the host privileged state. During privileged instruction
emulation the hypervisor might update the VM’s privileged
state 𝑝𝑣 ∈ 𝑆𝑝 , which is often kept in in-memory data struc-
tures, and gets a chance to modify the host’s own privileged
state 𝑝ℎ ∈ 𝑆𝑝 , which is installed in the hardware during di-
rect execution. We use 𝑐𝑓𝑔 : 𝑆𝑝 → 𝑆𝑝 to denote the abstract
hypervisor function which given a virtual privileged state
returns the host privileged state. In practice this function is
often incremental: given a change in one virtual privileged
register the hypervisor updates the corresponding physical
register. For the purpose of verification, capturing the incre-
mental changes is enough to reconstruct the 𝑐𝑓𝑔 function.
With this notation, we define faithful execution:

Definition (Faithful execution).

∃(𝑐ℎ, 𝑐𝑟) ∈ 𝐶 ×𝐶, ∀(𝑝𝑣, 𝑢, 𝑖) ∈ 𝑆𝑝 × 𝑆𝑢 × 𝐼 ,

ℎ𝑤 |𝑢 (𝑐ℎ, 𝑐𝑓𝑔(𝑝𝑣), 𝑢, 𝑖) ≃ ℎ𝑤 |𝑢 (𝑐𝑟 , 𝑝𝑣, 𝑢, 𝑖)

In plain English, the host hardware must be programmed
to execute as if the VM was running on a machine with a
different configuration. The verification of the host machine
programming therefore requires instantiating two hardware
interfaces (the two “buns” of the hardware burger), one with
the VM platform configuration and privileged state, and an-
other with the host platform configuration and the privileged

4

Lightweight Hypervisor Verification HOTOS 25, May 14–16, 2025, Banff, AB, Canada

state derived from the VM virtual state by the hypervisor.
We illustrate the criteria in Figure 5.

While the faithful emulation criterion often catches stan-
dard implementation bugs, faithful execution can detect
more subtle hardware misconfiguration than cannot be eas-
ily caught by language-level analysis or with an incomplete
hardware specification. In practice it might be impractical
to verify faithful execution for all instructions, but verifying
even a subset of instructions can be sufficient to derive de-
sirable properties. For instance, verifying faithful execution
of loads and stores is sufficient to ensure memory isolation.

5 CHECKING THE CRITERIA
Section 4 presented the two correctness criteria against an
abstract hypervisor model. The rest of this paper discusses
how to apply the criteria to verify real systems. The first
step is to embed both the specification and the hypervisor
implementation into a common representation. Hardware
specification languages often support compilation into other
languages, for instance the Sail compiler can generate C,
OCaml, Coq, and Isabelle, and is easily extensible. The next
step is to develop adapters to convert between the internal
representation of the machine state of the hypervisor and the
specification in order to check for equality. In our experience
the adapters tend to be straightforward mappings from one
structure layout to another. Finally, the choice of verifica-
tion framework can be adapted to the needs of each specific
project. We found software model checking to be especially
effective because architecture specifications and hypervisor
implementations tend to avoid complex code patterns that
complicate model checking, such as unbounded loops. How-
ever, we believe other approaches such as symbolic execution
or even fuzzing would also yield good results.

6 AUTOMATED VERIFICATION OF A
RISC-V HYPERVISOR

As a case study, we verified faithful emulation and partial
faithful execution (memory isolation) of Miralis [12], a RISC-
VM-mode hypervisor.Miralis is a relatively small hypervisor
(5.6k lines of code) written in Rustwhose purpose is to isolate
untrusted M-mode software from trusted execution environ-
ments. Notably,Miralis was not designed with verification
in mind; verification was only performed after the fact.

We built an automated verification framework for Miralis
using theKani [30]model checker forRust. By translating the
Sail specification to Rust, the faithfulness criteria are written
as simple unit tests that can be executed either with concrete
or symbolic values usingKani. Thismakes verification simple
to set-up and comprehend for Rust software engineers. We
found and corrected 21 in the Miralis code base, and proved
critical properties such as memory isolation.

6.1 Preparing the Architecture Specification
To analyze the specifications of the architectures using Kani,
we needed to translate the Sail code to Rust. Unfortunately,
the Sail compiler does not yet support compiling to Rust,
therefore we developed a new Sail back-end in 2K lines of
OCaml. In the future we hope that support for generating
Rust will exist upstream and be maintained in the same way
as the C back-end is. Using our Rust back-end we gener-
ated 6k lines of Rust code from the Sail specification, with
full support for all privileged instructions, interrupts, and
memory protection. The model is configured by importing
external functions, for instance the number of PMP registers
is controlled by providing a sys_pmp_count function. We
selected one set of parameters and fixed them for the pur-
pose of the verification. Finally, we wrote adapters to convert
between the internal representation of the RISC-V state of
Miralis and the model, as well as checks for equality. In total
the TCB includes the Sail model and compiler, Kani, and the
Rust compiler, all maintained externally, as well as our Rust
back-end and the adapters.

6.2 Checking Faithful Emulation
First, we proved faithful emulation of all privileged instruc-
tions and of interrupt delivery. We used the faithful em-
ulation criteria from Section 4.2 with arbitrary (symbolic)
state and privileged instruction, executing the instruction in
both theMiralis emulator and the reference Rustmodel. The
symbolic execution covers instruction decoding, emulation,
and virtual interrupt delivery, but ignores the assembly trap
handler which is part of the TCB. This amount for a total
coverage of 2.4k lines of code, or just above 40% of the hy-
pervisor code base. We found bugs throughout the whole
emulation pipeline, with the biggest concentration in CSR
emulation. Thanks to Rustwe did not find security flaws due
to undefined behavior, although we found multiple oppor-
tunities for the VM to crash the hypervisor and mismatch
with the RISC-V specification.

During verification we found it especially useful to pro-
gressively increase the coverage, making the process of retro-
fitting formal methods to an existing system much simpler.
Indeed, while we can now verify end-to-end emulation cor-
rectness, from arbitrary instruction bytes, to the decoder and
emulator, we started by verifying instructions one at a time.
There are two levers that enable this: the first is simply to
verify smaller functions, for instance the decoder only, the
second is to constrain the (symbolic) input. We report the
verification time for some of the components of the emu-
lation pipeline in Table 2, reported on a M3 MacBook Pro.
End-to-end verification takes 118 minutes, making it practi-
cal as a nightly CI job to catch regressions, while verifying

5

HOTOS 25, May 14–16, 2025, Banff, AB, Canada C. Castes, F. Costa, N. Foster, T. Bourgeat, and E. Bugnion

Table 2: Verification time of the emulation pipeline
Verification task Time Verification task Time

mret instruction 68s wfi instruction 28s
sret instruction 56s instruction decoder 45s
CSR read 99s interrupt virtualization 94s
CSR write 9min end-to-end emulation 118min

components individually only takes a few minutes, allowing
interactive debugging sessions.
As a caveat, we did have to slightly modify the RISC-

V model to verify Miralis. In total we changed 43 lines of
code, or 0.25% of the code base. The two reasons for these
changes are the discrepancy between extensions available
on the hardware platform and in the model, and the lack
of configurability for some aspects of the model. We expect
these limitations to disappear as the RISC-Vmodel improves.

6.3 Checking Faithful Execution of Loads
and Stores

Second, we proved memory isolation using the faithful exe-
cution criteria—i.e., we proved faithful execution for load and
store instructions.Miralis relies on PMP (physical memory
protection) registers for its own memory protection but also
exposes virtual PMP to the VM. As there can be at most 64
PMP registers, Miralis exposes fewer than the host machine.
To proceed, we instantiated two hardware interfaces, one
with the reference configuration (i.e., fewer PMP registers)
and one for the host. We also removed the memory used
byMiralis and MMIO from the reference machine, as those
should not be accessible from the VM.
The main difficulty in proving faithful execution is to re-

construct the configure function 𝑐𝑓𝑔 from the hypervisor
source code. As a reminder, the 𝑐𝑓𝑔 functions returns the
target host configuration from a virtual machine state. In-
deed, while the ℎ𝑦𝑝 function is often directly implemented
in hypervisors, the host state is usually configured incremen-
tally. To reconstruct the 𝑐𝑓𝑔 function in Miralis we recorded
the writes to privileged registers—functionality that already
existed for the purpose of unit-testing. We first recorded the
writes during hypervisor initialization, then we provided an
arbitrary (symbolic) VM state and recorded the writes that
occur in response. The first step was necessary as some of
the privileged registers are modified at initialization-time
only—e.g., the PMP entries protecting theMiralis and MMIO
memory. We then installed the VM symbolic state in the
reference hardware interface and the state produced by Mi-
ralis in the host interface, performing a memory access at a
symbolic address with both interfaces and querying Kani for

equality. We notably discovered an exploitable integer over-
flow in the computation of memory ranges. In total memory
isolation took 23 minutes to verify.

7 RELATEDWORK
This work takes inspiration from previous research in hyper-
visor testing and automated verification. In particular, the
idea of applying hardware development tools to hypervisor
development has been explored in [7] where a CPU vendor
test suite has been ported to test the KVM implementation.
This work additionally leverages the finding of past research
that the verification of systems with finite interfaces [22, 23]
can often be fully automated by SMT solvers [14, 28]. Our
method additionally builds on the design of hypervisors to
automate verification one step further: by automatically gen-
erating the specification.

8 CONCLUSION
This paper demonstrates how to apply lightweight formal
methods to hypervisors with minimal human effort. We ob-
serve that many high-level hypervisor properties, such as
isolation and platform compatibility, are consequences of
proper simulation of a reference machine. We propose two
criteria, faithful emulation and faithful execution, to model
correct simulation in hypervisors. Not only can the criteria be
efficiently checked by existing lightweight verification tools
but they can also use existing architecture specifications,
which removes the need for manual specifications. We built
a verification tool forMiralis, a RISC-V hypervisor, and used
it to discover 21 bugs and prove several guarantees including
memory isolation. Overall, we believe that lightweight veri-
fication is a great match for low-level systems code, offering
flexibility and ease of use without compromising on formal
guarantees.

ACKNOWLEDGEMENTS
The authors would like to thank Adrien Ghosn and Timothy
Roscoe, as well as the anonymous reviewers for their valuable
feedback. This work has received funding from the Swiss
State Secretariat for Education, Research, and Innovation
(SERI) under the SwissChips initiative, from the Microsoft-
EPFL Joint Research Center, anONR grant N68335-22-C-0411,
a DARPA grant W912CG-23-C-0032, and gifts from Google,
InfoSys, and the VMware University Research Fund.

REFERENCES
[1] Android virtualization framework (AVF). https://source.android.com/

docs/core/virtualization.
[2] The BSD hypervisor. https://bhyve.org/.
[3] MacOS Hypervisor.framework. https://developer.apple.com/

documentation/hypervisor.

6

https://source.android.com/docs/core/virtualization
https://source.android.com/docs/core/virtualization
https://bhyve.org/
https://developer.apple.com/documentation/hypervisor
https://developer.apple.com/documentation/hypervisor

Lightweight Hypervisor Verification HOTOS 25, May 14–16, 2025, Banff, AB, Canada

[4] Agerholm, S., and Larsen, P. G. A Lightweight Approach to Formal
Methods. In Proceeedings of the International Workshop on Current
Trends in Applied Formal Method (1998), pp. 168–183.

[5] Alkassar, E., Hillebrand, M. A., Paul, W. J., and Petrova, E. Au-
tomated Verification of a Small Hypervisor. In Proceedings of the
3rd International Conference on Verified Software, Theories, Tools and
Experiments (VSTTE) (2010), pp. 40–54.

[6] AMD. Secure virtual machine architecture reference manual, 2005.
[7] Amit, N., Tsafrir, D., Schuster, A., Ayoub, A., and Shlomo, E. Vir-

tual CPU validation. In Proceedings of the 25th ACM Symposium on
Operating Systems Principles (SOSP) (2015), pp. 311–327.

[8] Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K. E.,
Norton, R. M., Mundkur, P., Wassell, M., French, J., Pulte, C., Flur,
S., Stark, I., Krishnaswami, N., and Sewell, P. ISA semantics for
ARMv8-a, RISC-v, and CHERI-MIPS. Proc. ACM Program. Lang. 3,
POPL (2019), 71:1–71:31.

[9] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I., and Warfield, A. Xen and the art of
virtualization. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP) (2003), pp. 164–177.

[10] Bornholt, J., Joshi, R., Astrauskas, V., Cully, B., Kragl, B., Markle,
S., Sauri, K., Schleit, D., Slatton, G., Tasiran, S., Geffen, J. V., and
Warfield, A. Using Lightweight Formal Methods to Validate a Key-
Value Storage Node in Amazon S3. In Proceedings of the 28th ACM
Symposium on Operating Systems Principles (SOSP) (2021), pp. 836–850.

[11] Bugnion, E., Devine, S., Rosenblum, M., Sugerman, J., and Wang,
E. Y. Bringing Virtualization to the x86 Architecture with the Original
VMware Workstation. ACM Trans. Comput. Syst. 30, 4 (2012), 12:1–
12:51.

[12] Castes, C., Kalani, N. S., Saltovskaia, S., Terrier, N., Wilkinson,
A. V., and Bugnion, E. Kicking the Firmware Out of the TCB with the
Miralis Virtual Firmware Monitor. In Proceedings of the 2nd Workshop
on Kernel Isolation, Safety and Verification (KISV) (2024), pp. 8–15.

[13] Community, T. L. K. Linux kernel virtual machine. https://linux-
kvm.org/page/Main_Page, 2007.

[14] de Moura, L. M., and Bjørner, N. S. Z3: An Efficient SMT Solver.
pp. 337–340.

[15] Ferraiuolo, A., Baumann, A., Hawblitzel, C., and Parno, B. Ko-
modo: Using verification to disentangle secure-enclave hardware from
software. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP) (2017), pp. 287–305.

[16] Gu, R., Shao, Z., Chen, H., Wu, X. N., Kim, J., Sjöberg, V., and
Costanzo, D. CertiKOS: An Extensible Architecture for Building
Certified Concurrent OS Kernels. In Proceedings of the 12th Sympo-
sium on Operating System Design and Implementation (OSDI) (2016),
pp. 653–669.

[17] Jackson, D. Lightweight Formal Methods. In Proceedings of the 2001
International Symposium on Formal Methods Europe (2001), p. 1.

[18] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D. A.,
Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish,
M., Sewell, T., Tuch, H., andWinwood, S. seL4: formal verification of
an OS kernel. In Proceedings of the 22nd ACM Symposium on Operating

Systems Principles (SOSP) (2009), pp. 207–220.
[19] Leinenbach, D., and Santen, T. Verifying the Microsoft Hyper-V Hy-

pervisor with VCC. In Proceedings of the 16th International Symposium
on Formal Methods (FM) (2009), pp. 806–809.

[20] Li, H., Xu, X., Ren, J., and Dong, Y. ACRN: a big little hypervisor for
IoT development. In Proceedings of the 15th International Conference
on Virtual Execution Environments (VEE) (2019), pp. 31–44.

[21] Li, S.-W., Li, X., Gu, R., Nieh, J., and Hui, J. Z. Formally Verified
Memory Protection for a Commodity Multiprocessor Hypervisor. In
Proceedings of the 30th USENIX Security Symposium (2021), pp. 3953–
3970.

[22] Nelson, L., Bornholt, J., Gu, R., Baumann, A., Torlak, E., and
Wang, X. Scaling symbolic evaluation for automated verification of
systems code with Serval. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP) (2019), pp. 225–242.

[23] Nelson, L., Sigurbjarnarson, H., Zhang, K., Johnson, D., Bornholt,
J., Torlak, E., andWang, X. Hyperkernel: Push-Button Verification of
an OS Kernel. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP) (2017), pp. 252–269.

[24] Popek, G. J., and Goldberg, R. P. Formal Requirements for Virtual-
izable Third Generation Architectures. Commun. ACM 17, 7 (1974),
412–421.

[25] Reid, A. Trustworthy specifications of ARM® v8-A and v8-M sys-
tem level architecture. In Proceedings of the 2016 Formal Methods in
Computer-Aided Design Conferenc (FMCAD) (2016), pp. 161–168.

[26] Sammler, M., Hammond, A., Lepigre, R., Campbell, B., Pichon-
Pharabod, J., Dreyer, D., Garg, D., and Sewell, P. Islaris: verification
of machine code against authoritative ISA semantics. In Proceedings of
the ACM SIGPLAN 2022 Conference on Programming Language Design
and Implementation (PLDI) (2022), pp. 825–840.

[27] Tao, R., Yao, J., Li, X., Li, S.-W., Nieh, J., and Gu, R. Formal Verification
of a Multiprocessor Hypervisor on Arm RelaxedMemory Hardware. In
Proceedings of the 28th ACM Symposium on Operating Systems Principles
(SOSP) (2021), pp. 866–881.

[28] Torlak, E., and Bodík, R. Growing solver-aided languages with
rosette. In Proceedings of the 2013 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Onward!) (2013), pp. 135–152.

[29] Uhlig, R., Neiger, G., Rodgers, D., Santoni, A. L., Martins, F. C. M.,
Anderson, A. V., Bennett, S. M., Kägi, A., Leung, F. H., and Smith,
L. Intel Virtualization Technology. Computer 38, 5 (2005), 48–56.

[30] VanHattum, A., Schwartz-Narbonne, D., Chong, N., and Sampson,
A. Verifying Dynamic Trait Objects in Rust. In ICSE (SEIP) (2022),
pp. 321–330.

[31] Vasudevan, A., Chaki, S., Jia, L., McCune, J. M., Newsome, J., and
Datta, A. Design, Implementation and Verification of an eXtensible
and Modular Hypervisor Framework. In IEEE Symposium on Security
and Privacy (2013), pp. 430–444.

[32] Velte, A., and Velte, T. Microsoft virtualization with Hyper-V.
McGraw-Hill, Inc., 2009.

[33] Zave, P. Using lightweight modeling to understand chord. Comput.
Commun. Rev. 42, 2 (2012), 49–57.

7

https://linux-kvm.org/page/Main_Page
https://linux-kvm.org/page/Main_Page

	Abstract
	1 Introduction
	2 Context and Background
	2.1 Trap & Emulate Hypervisors
	2.2 Lifting Architecture Specifications

	3 A Simulation Problem
	4 Correctness Criteria
	4.1 Modelling the Architecture
	4.2 Faithful Emulation
	4.3 Faithful Execution

	5 Checking the Criteria
	6 Automated Verification of a RISC-V Hypervisor
	6.1 Preparing the Architecture Specification
	6.2 Checking Faithful Emulation
	6.3 Checking Faithful Execution of Loads and Stores

	7 Related Work
	8 Conclusion
	References

